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Analytical expressions are provided for the energy loss from vibrating mechanical resonators into
their support structures for two limiting cases: supports that can be treated as plates, and supports
that act as semi-infinite elastic media, with effectively infinite thickness. The former case is
applicable to many microscale resonators, while the latter is appropriate for nanoscale devices.
General formulations are given, applicable to a wide range of resonator geometries. These
formulations are then applied to two geometries commonly used in microelectromechanical systems
and nanelectromechanical systems applications: cantilevered beams and doubly fixed beams.
Experimental data are presented to validate the finite-thickness support theory, and the predictions
of the theory are also compared to data from existing literature for a microscale rectangular paddle
oscillator. © 2007 American Institute of Physics. �DOI: 10.1063/1.2401271�

I. INTRODUCTION

Loss mechanisms in microscale and nanoscale resona-
tors have been the subject of considerable recent interest,1–5

since understanding and quantifying the various sources of
loss is critical for efforts to increase the overall quality fac-
tor, Q, of such devices. Resonators with high Q are desirable
for a wide variety of applications, including filtering and
signal processing,6–8 mass sensing,9–11 and atomic force
microscopy,12–14 among others, and pursuit of high Q is one
of the principal design challenges in current research on na-
noelectromechanical systems.15 Energy propagation into the
supporting structure is one source of loss that has received
only limited attention, despite being relatively straightfor-
ward to estimate in many cases. A computational approach
has been recently proposed,16 but the most relevant analytic
treatments appear to be those of Jimbo and Itao,17 Cross and
Lifshitz,18 and Photiadis and Judge.19

In 1968, Jimbo and Itao17 derived an expression for the
energy loss from a cantilever vibrator into a semi-infinite
elastic medium, by comparing the vibration energy of the
cantilever with the energy associated with strain induced in
the elastic medium by the shear force and bending moment
at the root of the cantilever. Their result has been applied to
microelectromechanical/nanoelectromechanical �MEMS/
NEMS� applications in a number of later studies,1,3,4,20 in
which it is used to compare the order of magnitude of attach-
ment loss to other sources, such as viscous damping and
thermoelastic loss. In 2003, Cross and Lifshitz18 considered

elastic wave transmission across the junction between two
plates of differing widths but the same thickness, and calcu-
lated the associated energy loss.

These two studies treat the support structure to which a
resonator is attached quite differently: the former considers
the support to be of infinite thickness, while the latter con-
siders the support as a plate equal in thickness to the resona-
tor. Typically, micro- and nanoscale resonators are fabricated
on substrates, or “handle-layers,” that are several orders of
magnitude thicker than the devices themselves. For example,
in Fig. 1, a cantilever of thickness h is shown attached to a
support of greater thickness hp. Shear �transverse� waves
propagate in elastic solids at a speed cs=�E / �2�1+����,
where E is the elastic modulus, � is Poisson’s ratio, and � is
density. A resonator attached to such a solid and vibrating at
frequency f will thus produce shear waves in the solid with
wavelength �s=cs / f . If the thickness of the substrate is large
compared to this shear wavelength, a model in which hp is
treated as infinite can be appropriate. In many cases, how-
ever, the substrate thickness hp is small relative to the shear
wavelength, while still being much greater than the thickness
h of the resonator. In this article, as in our recent Letter on
cantilever attachment loss,19 we consider two models of the
substrate: a semi-infinite elastic medium and a plate of finite
thickness. For both cases, we present general expressions for
attachment loss applicable to a variety of resonator geom-
etries, and, in the latter case, we show experimental valida-
tion of the model, representing the first experimental evi-
dence that resonator quality factor Q can vary with substrate
thickness.

For the case in which the substrate is modeled with in-
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finite thickness, we follow the approach used by Jimbo and
Itao.17 However, in addition to being confined to the case of
a cantilever beam resonator, the analysis by Jimbo and Itao
assumes plane strain, reducing an inherently three-
dimensional problem to two dimensions. All wave propaga-
tion in the elastic half-space thus takes the form of plane
waves, and the width of the cantilever is not present in the
analysis: in essence, the assumption is one of infinite canti-
lever width. Indeed, the results derived in Ref. 17 for normal
and shear loads on the surface of the elastic half-space are
equivalent to the solutions presented by Miller and Pursey21

for normal and transverse vibrations of an infinitely long,
finite-width strip on the surface of a semi-infinite solid. The
model presented here considers the full three-dimensional
problem and can be applied to a variety of resonator geom-
etries.

For the case of a support of finite thickness, we consider
a semi-infinite plate with a thickness that need not be the
same as that of the resonator itself. Using the plate-edge
admittance results first reported by Eichler,22 we derive ex-
pressions for resonator attachment loss, which again are ap-
plicable to a variety of resonator geometries. For the case in
which the plate thickness is equal to the resonator thickness,
the expressions agree qualitatively with those of Cross and
Lifshitz.18

The purpose of this article is thus to provide accurate
analytical expressions for the energy loss from finite-width
resonators into their support structures, in the limits of thick
and thin support structures, and to report experimental data
that validate the latter model. In Secs. II A and II B, we show
expressions for energy loss in terms of forces and moments
developed at the resonator attachment point, for semi-infinite
solid and finite-thickness plate models of the support, respec-
tively. In Sec. III, we apply the results of Secs. II A and II B
to two specific geometries commonly used as MEMS and
NEMS oscillators: cantilevered beams and doubly fixed
beams. For both geometries, we present experimental data on

a series of macroscale beams to validate the finite-thickness
support theory. We also compare predictions to data from the
recent literature for a third resonator configuration, a microc-
scale rectangular paddle, for which experimental measure-
ments suggest that attachment loss may be a dominant loss
mechanism at low temperature.23 Finally, in Sec. IV, we con-
clude by comparing the results of the two models of the
support structure, and commenting on their utility in various
regimes of resonator geometry.

II. POWER FLOW INTO SUPPORT STRUCTURES

The energy lost from a vibrating resonator into the sur-
rounding structure consists of the net work done by the reso-
nator at the point of attachment. We restrict our attention to
cases in which the dimensions of the point of attachment are
small compared to the vibration wavelengths in the substrate
at the resonant frequency of the device. In such cases, the
effects of the vibrating resonator on the substrate can be
modeled as harmonic point forces and moments acting at the
attachment point. If F is a vector of these point loads, and v
is the corresponding vector of the harmonic linear and angu-
lar velocities at that point, then the average power transmit-
ted to the support is simply24

� =
1

2
Re�F · v�. �1�

Here, the forces in the vector F are multiplied by linear
velocities in v, while the moments in F are multiplied by the
angular velocities in v, giving consistent units for power. The
amplitude of all forces and moments are taken to be real; the
resulting deformations may be complex, but only the real
portions of the velocities �or imaginary parts of displace-
ments� are needed to calculate the energy lost to the support
structure and not recovered.

A. Flow into semi-infinite support

For a support structure modeled as a semi-infinite elastic
medium, the load vector F contains various forces and mo-
ments applied at a single point on the surface of the half-
space �the point of attachment of the resonator�. F can con-
sist of four types of loading in general: forces normal to the
support surface, forces parallel to the surface, moments about
an axis parallel to the surface, and moments about the axis
normal to the surface. We refer to these, respectively, as nor-
mal force Fn, shear force Fs, bending moment Mb, and tor-
sional moment Mt, and consider each to be harmonic with
frequency �, so that, for example, Fn= �Fn�ei�t. The velocity
vector v consists of the time-rate-of-change of the corre-
sponding linear and angular displacements: displacement w
normal to the surface, displacement u parallel to the surface,
rotation � out of the plane of the surface, and rotation �
within the surface plane. Note that the significance of each
load type depends upon the specific resonator geometry. For
example, in the case of a beam cantilevered normal to the
surface and vibrating in its fundamental flexural mode, a
shear force and bending moment are developed at the attach-

FIG. 1. A cantilever resonator attached to a support of finite thickness. The
beam has length l, width w, and thickness h, and the support has thickness
hp and lateral dimensions that are assumed to be infinite. In this article, two
cases are considered: a support modeled as a semi-infinite plate �finite hp

�h� and a support modeled as an elastic half-space �hp→	�.
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ment point, but normal loads on the surface due to axial
motion of the beam are negligible to first order, and torsional
motion is not present.

Miller and Pursey21 consider two load conditions on the
surface of a semi-infinite medium. In both cases the condi-
tion is not a point load but is instead a stress distribution over
a circle of finite radius. The first case is a circular area over
which the stress is constant and directed normal to the sur-
face of the half-space; this reduces to a normal point force in
the limit of zero radius. The second case is a circular area
over which the load is a shear stress directed along the sur-
face and circumferentially around the circle, with a magni-
tude proportional to the distance from the circle’s center.
This case represents a torsional load, and reduces to an ap-
plied torsional point moment in the zero radius limit.

Bycroft25 considers the vibration induced in a semi-
infinite elastic solid by motion of a rigid circular plate at-
tached to its surface, and calculates the impedance with re-
spect to all four possible loading conditions. Unlike Miller
and Pursey, who specify the stress distribution on the surface
of the half-space, Bycroft specifies the boundary condition
that the surface displacement must match that of the rigid
plate. However, in the limit of zero radius, these results col-
lapse to represent point forces or moments, and, in the two
cases considered by Miller and Pursey, agree with those re-
sults.

Following the derivations by Miller and Pursey21 and
Bycroft,25 and considering each load in isolation, the linear
and angular displacements at the resonator attachment point
are as follows:

w =
Fnks

2G
�
�

0

	 k�k2 − 1

N0�k�
dk , �2�

u =
Fsks

4G

�

0

	 k3

�k2 − �2
−

k3 − 2k
�k2 − 1

dk , �3�

� =
Mbks

3�

4G

�

0

	 k3�k2 − 1

N0�k�
dk , �4�

� =
Mtks

3

8G

�

0

	 k3

�k2 − 1
dk , �5�

where

N0�k� = 4k2�1 − k2�1/�2 − k2 + �2k2 − 1/�2�2,

G is the shear modulus �modulus of rigidity� of the material
�given by E / �2�1+���	, kl and ks are the longitudinal and
shear wave numbers in the solid at frequency �, � is their
ratio �kl /ks�, and k has been normalized by kl in Eqs. �2� and
�4� and by ks in Eqs. �3� and �5�, so that the integrals are
dimensionless.

The integrals in Eqs. �3� and �5� can be solved in closed
form, and since only the imaginary part is required, the inte-
gration can be limited to the ranges 0 to � for the first term of
Eq. �3�, and 0 to 1 for the second term and for Eq. �5�. The

results for the two integrals are �−2�3 /3−4/3�i and �−2/3�i,
respectively. If each load case is considered in isolation, the
average power delivered to the support is

�Fs
= �0.0265�3 + 0.0531��

Fs
2ks

G
, �6�

�Mt
= 0.0133�

Mt
2ks

3

G
. �7�

The integrals in Eqs. �2� and �4� can be solved numeri-
cally for particular values of �; although there is a pole in the
real part, the imaginary part remains bounded. For �2=1/3
�corresponding to Poisson’s ratio �=1/4�, the resulting
power is

�Fn
= 0.009 11�

Fn
2ks

G
, �8�

�Mb
= 0.004 73�

Mb
2ks

3

G
. �9�

The result for applied moment Mb can be achieved either
by considering Bycroft’s result for rotation about an axis
parallel to the surface �in the limit of zero plate radius� or by
superposing two solutions to the problem of applied normal
force, 180° out of phase temporally and a short distance apart
spatially, and taking the limit as the distance between the
forces approaches zero.

Note that the expressions given in Eqs. �6� and �9� are
valid when each load case is considered in isolation. There
also exist cross terms that relate shear force Fs to rotation �,
and bending moment Mb to displacement u; these contribute
to the total power delivered in the form of a term propor-
tional to the product of Fs and Mb. However, here we neglect
these cross terms, under the assumption that, for most reso-
nator geometries, a single load type will be responsible for
most of the energy loss into the support, and the loss result-
ing from other loads and from the cross terms will be negli-
gible.

Equations �6� and �9� show that the energy lost per cycle
of oscillation, �U �which is 2
� /�� depends directly on
shear wave number ks in the case of applied forces and on ks

3

in the case of applied moments. It is important to recall,
however, that the forces and/or moments developed at the
attachment of the resonator depend on the resonator geom-
etry and scale; thus, there is a further dependence of energy
loss on wave number indirectly through the scaling of that
force or moment. Furthermore, to determine a loss factor �or
its reciprocal, quality factor Q� for any oscillator, the energy
lost must be compared to the energy remaining in the oscil-
lator, which itself depends on the geometry of the oscillator
in question. Thus, any conclusions about the scaling of loss
factor with wave number �or frequency� require consider-
ation of the nature of the specific oscillator in question. As
examples, we describe the loss from cantilevered beams,
doubly clamped beams, and rectangular paddle oscillators in
Sec. III.
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B. Flow into plate edge

If the support structure is modeled as a plate, the energy
loss can be found by considering the response of the plate to
loads applied to its edge. The admittance at the edge of a
semi-infinite plate was first formulated in integral form in
1964 by Eichler,22 whose approximations of the solutions
were refined by Kaufmann;26 these integrals have recently
been solved in closed form by Su and Moorhouse.27 We con-
sider shear forces normal to the plate, Fs, bending moments
about the axis parallel to the plate edge, Mb, and torsional
moments about the axis perpendicular to the plate edge, Mt,
as shown in Fig. 2. Note that three other loads, not consid-
ered in Ref. 27 or in the present work, are also possible:
forces normal to the plate edge, shear forces parallel to the
plate, and bending moments about the axis perpendicular to
the plate. The stiffness of the plate with respect to any of
these latter three loads is much greater than the stiffness with
respect to the former three, and, for most resonator geom-
etries, attachment loss due to the latter can be assumed to be
negligible compared to loss due to the three load conditions
considered here.

The point mobility matrix Y relates the normal angular
velocity, n, the tangential angular velocity t, and the
transverse linear velocity, Vz, of the attachment point to the
applied loads by the expression


n

t

Vz
� = i�
�

�

w
� =

1
��phpD

�Y�
Mt

Mb

Fs
� ,

Y = 
y11k
2 0 0

0 y22k
2 y23k

0 y32k y33
� , �10�

in which �p is the plate density, hp is its thickness, and D
=Ehp

3 /12�1−�2� is its stiffness.
For the case �=0.3, Su and Moorhouse27 give Re�y11�

=Re�y22�=0.216 45, Re�y23�=Re�y32�=−0.291 49, and
Re�y33�=0.461 98. The resulting expressions for power radi-
ated into the plate are

�Fs
= 0.763

Fs
2

hp
2�E�p

, �11�

�Mb/t
= 1.182

�Mb/t
2

hp
3E

, �12�

when each load is again considered in isolation �note that Eq.
�12� applies for both bending moment and torsional moment
load conditions�.

If both bending moment and shear force are present, the
off-diagonal terms of Y result in an additional contribution
such that the total power is

�Fs and Mb
= �Fs

+ �Mb
− 1.751

��MbFs

�1/4h5/2E3/4 . �13�

Note that, unlike the case of the semi-infinite support model,
the cross terms are not neglected for the case of the plate
model, since, for a sufficiently thin plate, the contribution to
power flow from all three terms in Eq. �13� may be of similar
order.

III. LOSS FROM OSCILLATORS „CASE STUDIES…

Two oscillator geometries commonly used in MEMS and
NEMS applications, cantilevered beams and doubly fixed
beams, were considered in detail to determine attachment
energy loss. For each of these case studies, macroscale ex-
periments were conducted to validate the thin-plate limit
theory presented in Sec. II B. In addition, attachment loss
calculations were carried out numerically for a doubly sup-
ported rectangular plate oscillator design, for which mea-
sured values of Q reported in the literature appear to ap-
proach the limit imposed by attachment loss.

A. Cantilevered beam oscillators

1. Prediction of cantilever attachment loss

The quality factor, Q, of an oscillator is a measure of the
ratio of the energy of vibration of the oscillator to the energy
lost;28 the reciprocal of Q is the loss factor �,

� =
1

Q
=

�U

2
U
=

�

�U
, �14�

where �U is the total energy lost per cycle of oscillation, due
to all applicable loss mechanisms, and � is the total net
power flow out of the oscillator. The loss factor due to at-
tachment to the support, �attach, can be found by replacing the
total power � with the power flowing to the support �derived
in Secs. II A and II B�. This sets an upper bound on the
oscillator quality factor: if support loss is dominant and all
other loss mechanisms are neglected, Q�Qattach=�attach

−1 .
The resonant behavior of a cantilevered beam oscillator

fixed at its root is well known.29 The energy of vibration in
the nth mode can be written as Un=1/2�whl�n

2u0
2, where � is

the density, �n is the resonant frequency of the mode, and the
cantilever has length l, width w, and thickness h. This energy
is scaled by u0, the arbitrary amplitude of the free vibration
mode shape, as are the shear force and bending moment
developed at the cantilever root,

Fs = 2EIkn
3�nu0, �15�

FIG. 2. Semi-infinite plate geometry. Note that, assuming small angles, the
bending rotation �=−dw /dx, while torsional rotation �=dw /dy.
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Mb = − 2EIkn
2u0, �16�

where

�n =
sinh�knl� − sin�knl�
cosh�knl� + cos�knl�

,

E is Young’s modulus, and I=wh3 /12 is the moment of in-
ertia of the beam. The eigenvalues are knl
= �1.875,4.694, . . .	, determined from cosh�knl�cos�knl�=−1,
and are related to the resonant frequency by �n

=kn
2�EI /�wh.

In reality, the cantilever is not fixed at its root, but is
instead attached to a support structure that has finite stiffness.
However, if the stiffness of the support is sufficiently high,
the shear force and bending moment derived using the above
assumption are an accurate approximation of the true load on
the support. For the case of a support modeled as a half-
space, the contribution to radiated power due to bending mo-
ment is negligible compared to the contribution due to shear
force, and the loss factor can be determined simply by sub-
stituting Eq. �15� into Eq. �6� and the resulting expression
into Eq. �14�. For the fundamental beam vibration mode,
with cantilever and support made from the same material, the
result is

Q−1 = A
w

l
h

l
�4

, �17�

where the numerical coefficient A is a weak function of Pois-
son’s ratio, �, and is 0.31 for �=0.3 and 0.29 for �=0.25.
Note that this expression differs substantially from that given
by Ref. 17, in which Q−1 is proportional only to �h / l�3 when
the bending moment contribution is neglected, and does not
depend on the cantilever width w.

In the case of a support modeled as a plate, the radiated
power can be found by substituting Eq. �15� and Eq. �16�
into Eq. �13�, and the attachment loss factor is found to be

Q−1 =
w

l
�A1 h

hp
�2

+ A2 h

hp
�5/2

+ A3 h

hp
�3� , �18�

where A1, A2, and A3 are weak functions of Poisson’s ratio,
�. For �=0.3, the coefficients are A1=0.95, A2=−0.65, and
A3=0.24. The first term is due to shear force Fs at the can-
tilever attachment, the third is due to bending moment Mb,
and the second is the cross term arising from the off-diagonal
elements of the Y matrix and depending on both Fs and Mb.
It can be seen from Eq. �18� that, for any case in which hp is
large relative to h, the shear force term dominates and the
effect of the bending moment at the attachment point may be
neglected.

The predicted values of attachment loss due are indepen-
dent of scale and depend only on relative dimensions: the
results for loss into a half-space depend only on the beam
aspect ratios h /L and w /L, while the results for loss into a
plate edge depend also on the ratio of beam to plate thick-
nesses, h /hp. In either case, the greatest source of attachment
loss is that due to shear force developed at the oscillator
attachment.

The error introduced by the use of shear force Fs and
bending moment Mb corresponding to a cantilever with fixed

root is negligible for the case of an infinite-thickness support,
and is also negligible for a finite-thickness support as long as
the support thickness is several times larger than the cantile-
ver thickness. Even for cases in which the support thickness
is the same as the cantilever thickness, the result provides a
valid estimate of the order of magnitude of attachment loss.
Cross and Lifshitz,18 in their consideration of energy flow
from a narrow plate to a wider plate of equal thickness, make
an analogous approximation: the behavior of the narrow
plate is first solved using the assumption of zero displace-
ment at the boundary, then the radiation into the wider plate
is calculated from the resulting strain at the point of attach-
ment.

A more accurate calculation of loss into a thin support
requires the cantilever behavior to be solved using a mixed
boundary condition at the root: the condition �w=0, dw /dx
=0� is replaced by a relationship between
w , dw /dx , d2w /dx2, and d3w /dx3 determined by consider-
ing the second and third rows of Eq. �10� and noting that
Fs=EI�d3w /dx3� and Mb=EI�d2w /dx2�. The resulting prob-
lem can be solved numerically; the result indicates that the
error introduced by the rigid-attachment approximation is
roughly a factor of 2 when the cantilever and plate are of
equal thickness, and less than 10% when the plate thickness
is twice that of the cantilever.

A plot of attachment loss from a cantilevered beam reso-
nator vibrating in its fundamental flexural mode is shown in
Fig. 3. Four curves are shown relating the loss factor, Q−1, to
the thickness of the support plate hp, scaled by the cantilever
thickness h. The first is the prediction for attachment loss
achieved by modeling the support as a thin plate �based on
Eq. �18��. The second is an approximate version of the same
prediction, in which contributions from bending moment and
rotation of the attachment point are neglected, and the loss is

FIG. 3. Attachment loss from a cantilevered beam resonator vibrating in its
fundamental flexural mode, as a function of ratio of support plate thickness
hp to cantilever thickness h. Four curves are shown: �—� prediction for
support modeled as a thin plate, Eq. �18�, applicable when hp��p, �¯� first
term of Eq. �18� only, and two predictions for thick support structure, Eq.
�17�, applicable when hp��p: �---� asymptote for h / l=1/10 and �-·-� as-
ymptote for h / l=1/25. The curves shown are for the case w / l=1/10; all
predictions scale linearly with w / l.
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a linear function of the square of beam aspect ratio �the first
term of Eq. �18��. This curve only differs significantly from
the first for cases in which the support thickness is less than
an order of magnitude greater than the cantilever thickness,
and shows that even for such cases, the simple linear rela-
tionship provides a good order-of-magnitude estimate of
loss. The final two curves depict the infinite-thickness as-
ymptotes based on the half-space support model of Eq. �17�,
for two different cantilever thickness-to-length ratios h / l. Al-
though strictly accurate only in the infinite hp limit, these
curves provide a valid order-of-magnitude estimation of at-
tachment loss for any case in which the support thickness is
large compared to the shear wavelength in the support at the
frequency of interest. The speed of shear waves in an elastic
solid, cs=�E / �2�1+����, is a function of elastic modulus E,
density �, and Poisson’s ratio �. At the fundamental resonant
frequency f of a cantilever �which depends on E and � as
well as cantilever dimensions�, the shear wavelength �s

=cs / f is between 3.5l2 /h and 4.0l2 /h for Poisson’s ratio, �,
between 0.2 and 0.5. Thus, the support thickness must be
many times greater than the length of the cantilever for the
half-space support model to be applicable. Many MEMS and
nanoscale devices are fabricated on wafers with thickness
less than 1 mm: in such cases, MEMS cantilevers with
lengths of tens or hundreds of micrometers �megahertz fre-
quencies� will fall in the regime governed by the plate
model, while nanoscale cantilevers, with lengths near or be-
low 1 �m and frequencies of hundreds of megahertz or gi-
gahertz, will be in the half-space model regime.

2. Experimental measurement of cantilever attachment
loss

Experimentally validating the half-space support model
of Sec. II A is quite difficult: for nanoscale devices, in which
wafer thickness may be relatively great enough that the sup-
port acts as a half-space, loss factors due to other loss mecha-
nisms are typically much greater than the extremely small
values predicted for attachment loss. Validation of the plate
support model, by contrast, is possible using a macroscale

experiment. At macroscale beams can easily be fabricated
from plates monolithically with a wide range of dimensions.
Of particular importance is the relative thickness of the beam
to the plate, which is somewhat impractical to specify with
MEMS fabrication. Furthermore, other dissipation mecha-
nisms such as the surface adsorption of organic compounds,
which are difficult to control in microscale systems, are not a
factor for macroscale experiments.

A series of cantilevers were milled from the edges of
large aluminum plates of varying thickness. Table I shows
the specific dimensions used, as well as beam aspect ratios
and the ratio of plate to beam thicknesses. The plates,
roughly 2 ft. square, were in all cases several times larger
than the plate flexural wavelength at the frequency of the
cantilevers’ fundamental vibration mode. The half of each
plate furthest from the cantilever being measured was coated
with viscoelastic damping material to minimize reflection of
energy-carrying elastic waves from the boundaries. The
lower quarter of the plate is buried in sand, which further
minimizes reflections �see Fig. 4�.

Excitation was provided electrostatically by grounding
the support plate and applying a drive voltage to an electrode
a short distance from the tip of the cantilever to be measured.
The force applied to the cantilever is

F =
2A�o

d2 VdcVac, �19�

where �o is the permittivity of free space, d is the size of the
gap between electrode and cantilever, A is the area of over-
lap, Vdc is the dc component of the applied voltage, and Vac is
the component of voltage oscillating at the drive frequency.
The vibration response of the cantilevers was measured us-
ing a laser vibrometer. The vibrometer, which measures only
the component of velocity along the line of sight, was
mounted on a tripod and oriented to monitor the out-of-plane
motion of the cantilevers. Adequate signal-to-noise condi-
tions existed for Vdc�50 V and �Vac��50 V, for gap d as
large as 1 mm.

TABLE I. Geometry, predicted Q, and measured Q for cantilevered beams.

Dimensions �mm� Aspect ratios Predictions Measurements

Plate Beam
Length

l
Width

w
Thickness

h l /w l /h hp /h
Freq.
�Hz� Qattach Qvisc Qac Qtotal

Freq.
�Hz� Q

1 1 9.53 1.27 0.61 7.5 15.6 20.8 5523.8 3974 16000 5244 1193 5649 1123
2 19.05 2.54 1.09 7.5 17.4 11.6 2934.5 940 25000 5920 622 2641 360
3 19.05 3.81 1.14 5.0 16.7 11.1 2934.5 627 25000 3927 450 2669 303
4 12.70 1.70 1.12 7.5 11.4 11.4 5696.5 1238 30000 4465 715 5045 809

2 5 9.53 1.27 0.71 7.5 13.4 13.4 6444.5 1702 20000 7137 900 6598 654
6 19.05 2.54 1.19 7.5 16.0 8.0 2704.4 637 22000 5028 465 2533 306
7 19.05 3.81 1.22 5.0 15.6 7.8 2761.9 408 22000 3479 321 2548 275
8 9.53 1.70 0.71 5.6 13.4 13.4 6444.5 1277 20000 12606 803 6782 552

3 9 9.53 1.27 0.64 7.5 15.0 7.5 5754.0 567 17000 6154 429 5908 271
10 19.05 2.54 1.27 7.5 15.0 3.8 2934.5 155 25000 5920 139 3018 52

4 11 9.53 1.27 0.61 7.5 15.6 2.6 5523.8 79.6 16000 5244 76.0 6496 12
12 19.05 2.54 1.37 7.5 13.9 1.2 3107.2 18.2 27000 6637 18.0 2490 2.9
13 23.75 3.18 1.55 7.5 15.3 1.0 2258.4 14.5 26000 5449 14.4 1658 2.4
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The fundamental resonant frequency of each cantilever
was found by applying the drive voltage continuously and
sweeping the frequency of the ac component with the vibro-
meter trained on the tip of that cantilever. Cantilever quality
factors, Q, were obtained by measuring the half-power band-
widths in the frequency spectra of the response. For beams
with sufficiently high Q �specifically, beams 1–9�, the values
obtained via frequency sweep were confirmed by measuring
the time-domain decay rate of free vibration; the results
matched the frequency sweep measurements to within 10%
for all cases. To prevent squeeze-film damping30 �a dissipa-
tion mechanism associated with the fluid-filled gap between
a planar vibrator and a stationary surface� from limiting Q in
these measurements, preliminary frequency sweeps with dif-
ferent gaps d were conducted. Because drive force, and thus
beam tip velocity, increases with decreasing gap d, the opti-
mal gap is the smallest gap d for which squeeze-film damp-
ing is negligible. For each beam, this was found by repeating
the frequency sweep with ever-decreasing gaps and noting
the distance at which squeeze-film damping begins to cause
measurable decreases in Q.

Vibrometer scans of the entire surface of each cantilever
confirmed that the measured resonant peaks corresponded to
motion in the fundamental flexural mode of the cantilevers.
In addition, several scans were performed over large areas of
the support plates, both before and after the application of
the viscoelastic material and the placement in sand. These
measurements showed a dramatic decrease in the standing-
wave ratio of the plate vibration due to the sand and vis-
coelastic material, indicating that these treatments were suc-
cessful in minimizing the amount of the energy reflected
from the plate boundaries. We estimate that, at the attach-
ment point of the cantilevers, the amplitude of flexural waves
returning from the plate was no more than 15% of the am-
plitude of outgoing waves. For a truly semi-infinite plate

there would be no returning waves, and the vibration at the
cantilever root would be solely due to outgoing waves radi-
ating into the plate.

The measured quality factors are compared to theoretical
predictions based on Eq. �18� in Table I. Because the mea-
sured Q values are the quality factors due to the combined
action of all loss mechanisms, they must be compared to
predictions that incorporate not only attachment loss but also
estimates of any other significant sources of loss in the ex-
periment. As noted above, many sources of loss that are rel-
evant at micro- and nanoscales can be safely neglected at the
macroscale. However, the experiment was conducted in air,
so the contributions of viscous and acoustic loss must be
considered, as well as the intrinsic loss of the aluminum
material. Estimates of these losses are included in Table I, as
well as the total Q, found from 1/Qtotal=1 /Qattach+1/Qvisc

+1/Qac+1/Qint.
Intrinsic loss in aluminum is known to vary widely with

alloy and processing history; here, the intrinsic loss of alu-
minum, Qint, is taken to be 3000. The estimates of viscous
and acoustic losses were obtained using expressions given by
Vignola et al.31 The expression for viscous loss is

Qvisc =
h�s

3
� �

2��
, �20�

where �s is the density of the device, � is the resonance
frequency, and � and � are the viscosity and density of the
surrounding fluid, respectively. This expression is based on a
model proposed originally by Kokubun et al.32,33 and first
applied to cantilevers by Blom et al.,34 in which the structure
is modeled as a collection of spheres. Acoustic loss is esti-
mated from the expression

Qac =
��sh

2�r�c
, �21�

where c is the sound speed of the medium and �r is the
radiation efficiency, defined as the ratio of the average acous-
tic power radiated per unit area of the vibrating structure to
the acoustic power radiated per unit area by a uniformly
vibrating, circular piston.35 The radiated power from a
baffled planar oscillator is given by Williams;36 note that
edge effects have been neglected.

The measured values of Q shown in Table I show the
same general trend as the predicted values of Qtotal; they are
lower than the predictions in all cases and are within a factor
of 2 for all cases except beams 10–13; these are the beams
with the lowest Q, indicating that a significant amount of
vibration energy is radiated into the attachment. The assump-
tion that the finite support plate acts as a semi-infinite plate is
least valid for these cases, in which plate flexural waves
reflected from the boundaries have significant amplitude
relative to the vibration of the cantilevers themselves. Thus,
the predictions are based on the assumption of a plate which
has significantly less vibration amplitude at the attachment
point than the cases actually measured, resulting in an over-
prediction of Qattach. The measured data are also shown
graphically in Fig. 5 alongside the prediction of attachment
loss factor �scaled by aspect ratio w / l�. Note that it is not

FIG. 4. Experimental setup.
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expected that the data should fall directly on the theoretical
curve, since the measurement is one of total Q, including
contributions from other loss mechanisms. The curve in Fig.
5 thus represents a lower bound that measured data would be
expected to approach when other loss mechanisms are neg-
ligible.

B. Doubly fixed beams

1. Prediction of beam attachment loss

Attachment loss is calculated in a similar fashion for a
beam attached to rigid supports at both ends, referred to vari-
ously as a doubly fixed, doubly clamped, or clamped-
clamped �“c-c”� beam. The shear force and bending moment
developed at the boundaries of such a beam are the same as
those given in Eq. �15� and Eq. �16� for a cantilever, except
that the coefficient �n is given by �sin�knl�
+sinh�knl�� / �cos�knl�−cosh�knl�� and the eigenvalues knl are
determined from cosh�knl�cos�knl�= +1. For the fundamental
mode of vibration, �1=0.9825 and k1l=4.730. The stored
energy of vibration, again Un=1/2�whl�n

2u0
2, is greater than

for the cantilever due to the higher resonant frequency �n.
For a support structure modeled as a half-space, the

dominant power flow into the support from the beam attach-
ment point is given by Eq. �6�. Since the shear wavelength ks

in the support is proportional to frequency �, and, for opera-
tion at a resonant frequency of the beam, �=�n is propor-
tional to the square of the beam wave number kn, the power
flow at the attachment point is proportional to �n

2kn
10. Further-

more, unlike a cantilever, a doubly fixed beam has two at-
tachment points, so the total flow of power from beam to
support must be doubled. Both numerator and denominator
of Eq. �14� are greater for a doubly clamped beam than for a
cantilever of the same dimensions, the result being that the
expression for loss factor in the fundamental mode is the
same as in Eq. �17� except that the coefficient A is a factor of
145.1 higher,

Ac-c =
2��1

2k1
4�c-c

��1
2k1

4�cant
Acant = 145.1Acant. �22�

For Poisson’s ratio �=0.3, the coefficient A is thus 45.0
for loss from a doubly clamped beam into a suitably thick
support structure.

For a support modeled as a plate, the power flow given
in Eq. �11� is proportional to Fs and thus to �n

2kn
6, while that

given in Eq. �12� is proportional only to kn
6, and the cross

term in Eq. �13� is proportional to �nkn
6. For the fundamental

resonant mode, the loss factor again takes the form given in
Eq. �18�, except that A1 is greater by a factor of 2�c-c

2 /�cant
2 ,

A2 is greater by a factor of 2�c-c /�cant, and A3 is greater by a
factor of 2. For �=0.3, the coefficients for a doubly clamped
beam are A1=3.40, A2=−1.74, and A3=0.48.

Figure 6 compares the theoretical predictions of attach-
ment loss for two beams of the same size, one clamped only
at one end �a cantilever� and the other clamped at both ends.
Both the regime in which the support acts as a plate and the

FIG. 6. Comparison of predicted attachment loss from a cantilevered beam
resonator �—� and a doubly clamped beam resonator �---� of the same di-
mensions, each vibrating in its fundamental flexural mode, as a function of
ratio of support plate thickness hp to beam thickness h. The curves shown
are for the case w / l=1/10 and h / l=1/25; all predictions scale linearly with
w / l. Curves are shown for both the plate-model and half-space model of the
support.

FIG. 5. Measured total cantilever loss factors ���,
along with the theoretical prediction for loss factor due
to attachment loss �---�. Note that the abscissa has a
linear scale, unlike the log scale used in Fig. 3.
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regime in which the support acts as a half-space are shown.
Note that the transition between regimes occurs for thinner
support structures in the case of the doubly clamped beam,
since the resonant frequency � �and therefore the shear wave
number ks in the support� is a factor of 6.36 higher than for
a cantilever of the same size, and thus the support thickness
hp that exceeds the shear wavelength is a factor of 6.36
smaller.

2. Experimental measurement of doubly fixed beams

Experiments were conducted on seven doubly fixed
beams. These beams were fabricated on the same plates as
the cantilevers described in Sec. III A, after cantilever mea-
surements were complete. The doubly fixed beams were cre-
ated by milling a long channel into the interior of the plates
�about 70% the length of the plate�, leaving only thin bridges
spanning the channel. The milled channel was about one-
third of the way down from the top so that the beams were
near the center of the portion of the plate not buried in sand.
The same electrostatic actuation was used to excite the struc-
tures, and the same procedures were used to establish the
optimal gap between the electrode and beam. As with the
cantilevers, measurements of the resonance frequencies and
Q were obtained by sweeping the frequency of the harmonic
drive signal and using the half-power bandwidth method.

The measured quality factors are compared to theoretical
predictions in Table II. Again, because the measured Q val-
ues are the quality factors due to the combined action of all
loss mechanisms, estimates of fluid-related loss mechanisms
are included in the table, as well as the total Q, which in-
cludes contributions from attachment loss, viscous and
acoustic loss into the surrounding air, and intrinsic loss in the
aluminum. The measured values of Q show the same general
trend as the predicted values of Qtotal and are within a factor
of 2 for all cases. For all cases except beam #4, the measured
values are lower than the predicted values of Qattach. The
measured data are also shown graphically in Fig. 7 alongside
the prediction of attachment loss factor �scaled by aspect
ratio w / l�.

C. Other oscillator geometries

Other oscillator geometries can be treated in a manner
similar to the cantilever and doubly fixed beam. If the oscil-
lator geometry is complicated, the vibration energy in the
oscillator and the reaction forces and moments at the point of
attachment can be found from numerical models rather than
analytical solutions. As an example, we calculate the attach-
ment loss of a rectangular paddle oscillator attached to the
substrate by two support arms, as shown in Fig. 8.

Hauke et al.23 present measurements of quality factor, Q,
for such a resonator, in a cryogenic vacuum at temperatures

TABLE II. Geometry, predicted Q, and measured Q for doubly fixed beams.

Dimensions �mm� Aspect ratios Predictions Measurements

Plate Beam
Length Width Thickness

l /w l /h hp /h
Freq.

Qattach Qvisc Qac Qtotal

Freq.
Ql w h �Hz� �Hz�

1 9.53 1.27 0.61 7.5 15.6 20.8 35153 1070 40000 33371 756 28740 1019
1 2 19.05 3.84 1.17 5.0 16.3 10.9 16844 201 53000 20332 186 14670 103

3 12.70 1.78 1.19 7.1 10.6 10.6 38723 278 82000 32419 251 30360 271

2
4 19.05 3.78 1.22 5.0 15.6 7.8 17576 108 57000 22139 104 15130 163
5 9.53 1.70 0.89 5.6 10.7 10.7 51265 221 70000 125352 205 41000 160

3
6 9.53 1.40 0.74 6.8 13.0 6.5 42251 102 53000 48465 99 33470 53
7 18.92 2.67 1.35 7.1 14.1 3.5 19669 34 66000 41233 34 18760 19

FIG. 7. Measured total loss factors for doubly fixed
beams ���, along with the theoretical prediction for
loss factor due to attachment loss �—�.
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as low as 15 K. For several of the modes reported, the mea-
sured Qs are insensitive to variations in temperature below
20 K, an indication that temperature-dependent mechanisms
such as thermoelastic loss are not the dominant means of
energy loss. This suggests that attachment loss, which is in-
sensitive to temperature, may be a significant loss mecha-
nism for this geometry at low temperature, and, indeed, we
predict attachment loss to be within an order of magnitude of
the measured values.

The displacement of the paddle and support arms in each
of the first five modes is available from detailed finite-
element simulations. From this, we calculate the shear force
Fs at the intersection of the support arms and the substrate
for the second, third, and fifth modes. These modes corre-
spond to rigid out-of-plane translation of the paddle, rotation
of the paddle about a nodal line midway between the support
arms, and bending of the paddle with two nodal lines in the
direction parallel to the support arms, and are referred to as
the plunging, rocking, and 2–0 modes, respectively. The first
and fourth modes, characterized, respectively, by rotation of
the paddle about the support arms and bending of the paddle
with two perpendicular nodal lines, and referred to as the
torsion and 1–1 modes, involve only torsional motion of the
support arms and thus result in no shear force at the point of
attachment. In these cases, the torsional moment Mt applied
to the substrate results in predicted attachment loss that is
many orders of magnitude less than the measured values re-
ported in Ref. 23.

The paddle was attached to a substrate 625 �m thick,
which, although over 400 times thicker than the 1.5 �m
thick paddle and support arms, is still only a small fraction of
the shear wavelength at the resonant frequencies of the
modes in question. The appropriate model for the substrate is
thus the plate model of Sec. II B, i.e., power flow into the
substrate is obtained via Eq. �11�. The vibration energy in the
paddle for each mode is also calculated via finite-element
analysis, and the loss factor obtained via Eq. �14�.

Table III compares the predicted values of Q to the val-
ues measured by Haucke et al.23 at low temperature for
modes two, three, and five. In all cases, predicted attachment
loss is within an order of magnitude of the total measured
loss, indicating that the dominant low-temperature loss
mechanism in these modes may be radiation to the support
structure.

The differences between the measured and predicted val-
ues can be ascribed to a number of causes. Since the experi-
mental values are measurements of total loss, while the pre-
dictions are only of attachment loss, any other sources of
losses present in the experiment cause an increase in the
measured loss. This may be the case for the 2–0 mode, for
which the predicted attachment loss is just over half of the
measured total loss. A second cause of disparity is the as-
sumption made when predicting attachment loss that the sub-
strate is a semi-infinite plate. In reality, the chip upon which
the measured paddle was fabricated has overall dimensions
of approximately 1�2 cm. At the frequency of the 2–0
mode, the bending wavelength in a silicon plate 625 �m
thick is 0.43 cm, while at the frequency of the plunging
mode the wavelength is nearly 0.9 cm: the chip dimensions
are not significantly greater that the bending wavelength.
Thus, the chip is somewhat stiffer �resulting in lower attach-
ment loss� than if it were a semi-infinite plate. It is important
to note that if the chip were smaller than one bending wave-
length, its stiffness with respect to a shear force input would
increase rapidly, and the approximation of a semi-infinite
support plate would be wholly inappropriate.

IV. CONCLUSIONS

Finally, we conclude by comparing the results of the two
models of the support structure, and commenting on their
utility in various regimes of resonator geometry.

The expressions for power flow given in Sec. II are ap-
plicable for any resonator geometry for which the attachment
to the support structure acts essentially as a point source for
vibration in the support. The plate-support model is appro-
priate for situations in which a resonator is attached to the
edge of a platelike support structure, with thickness that is
small compared to the shear wavelength in the material at the

FIG. 8. Rectangular paddle resonator and schematics of
first five mode shapes. The resonator and support arms
are freestanding and attached to the surrounding struc-
ture, which is anchored to the substrate. For the resona-
tor measured by Haucke et al. �Ref. 23�, the resonator is
147�97.75 �m, and the support arms are 50.9 �m
long and 4.15�m wide.

TABLE III. Comparison of predicted and measured loss for a rectangular
paddle oscillator.

Mode
Measured
frequency

FEM
frequency

Measured
Q−1

Predicted
Q−1

2 �plunging� 131 kHz 101 kHz 5�10−6 2.5�10−5

3 �rocking� 265 kHz 281 kHz 5�10−6 1.5�10−5

5 �“2-0”� 536 kHz 542 kHz 1.2�10−6 6.8�10−7
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frequency of operation. Many microscale mechanical resona-
tors fall into this category, typically being fabricated from
wafers that are thinner than a few millimeters, and operating
at megahertz frequencies at which the shear wavelength is
several millimeters or more. In these cases, energy is radi-
ated in the form of flexural waves in the support structure.
The semi-infinite-space model of the support provides a
good estimate of power flow into supports with thickness
that exceeds the shear wavelength. Nanoscale resonators op-
erating near or above 1 GHz will radiate energy into the
supporting structure in the form of shear waves with wave-
lengths on the order of several microns, typically much
smaller than the support structure thickness. An intermediate
regime, not discussed in this article, will occur in cases in
which the support thickness is the same order as the shear
wavelength at the frequency of operation. Resonant behavior
is possible in cases in which the support thickness matches
an small integer number of half-wavelengths; this may be of
interest for future investigation since small microscale or
large nanoscale resonators may operate in this transition re-
gime.

For the cantilever and doubly clamped beam resonators
explored here as case studies, attachment loss was found to
scale with the beam width-to-length aspect ratio and with the
square of the ratio of beam-to-plate thickness, for a wide
range of support structures thicker than the resonator but thin
enough to be modeled as a plate. Thus, attachment loss de-
creases rapidly as the support is stiffened, while, as expected,
narrow beams have lower attachment loss than wider beams.
For very thick support structures �or very thin beams�, the
half-space model of the support is appropriate, in which case
attachment loss is still directly proportional to beam width-
to-length aspect ratio, but is also very strongly dependent on
beam thickness-to-length ratio, such that only short, stubby
beams will have significant attachment loss.

The macroscale experiments described here provide a
validation of the plate-support model for attachment loss,
and the comparison of predictions from this model with mea-
surements of microscale paddle oscillators from the existing
literature indicates that attachment loss can be the dominant
loss mechanism in some circumstances. The half-space-
support model predicts very low levels of attachment loss for
beamlike resonators, such that other loss mechanisms are
likely to dominate for resonators operating in this regime.
This three-dimensional half-space-support theory is yet to be
validated, but provides a more rigorous estimate of attach-
ment loss than the two-dimensional theory employed previ-
ously.
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